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ABSTRACT 

We prove that  in every BE2 model (one satisfies ~2 collection axioms 

but  not ~2 induction), every recursively enumerable (r.e.) set is either 

prompt or recursive. Consequently, over the base theory Z2 collection, 

the existence of r.e. minimal pairs is equivalent to E2 induction. We also 

refute Shoenfield's Conjecture in B~2 models. 

1. Introduction and preliminaries 

Priority constructions are the trademark of theorems on the recursively enumer- 

able Turing degrees. By their combinatorial patterns, they are naturally identi- 

fied as finite injury, infinite injury, and so forth. Following Chong and Yang [4], 

[3], we analyze the complexity of infinite injury arguments and pinpoint exactly 

the position of their degree-theoretic applications within the hierarchy of frag- 
ments of Peano arithmetic (cf. Chong and Yang [5] for a discussion of the issues 

and motivation behind such studies). 
Finite injury priority constructions fall essentially into two types: the Friedberg 

--Mu~nik type and the Sacks splitting type. For the former, Chong and Mourad 

[2] show that even though such constructions cannot be carried out without ~1 
induction, E1 bounding is a sufficiently strong theory to establish the existence 

of a pair of incomparable recursively enumerable degrees. For the latter, the 
results of Mytilinaios [12] and Mourad [11] together imply that the Sacks splitting 

theorem is equivalent to ~1 induction over the base theory of ~1 bounding. 

Infinite injury constructions, by contrast, are more varied and harder to cate- 

gorize. Results to-date show that the existence of a high recursively enumerable 

degree is equivalent to ~2 induction over the base theory of ~2 bounding [4], 

and that the Density Theorem is provable under ~2 bounding [7] (note that the 

Density Theorem fails in all models of E1 bounding in which E1 induction fails, 

by a result of Mourad [11]). Our intuition suggests that certain ~E2 properties 

are necessary for infinite injury arguments to carry through (although, again, 

there are special models satisfying ~1 induction in which virtually every con- 

struction in classical recursion theory works). Here we investigate a third type 

of infinite injury construction, exemplified in the proof that there is a minimal 

pair of recursively enumerable degrees. Two recursively enumerable degrees are 
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said to form a minimal pair if the only recursively enumerable degree recursive 

in both of them is the recursive degree. Historically the existence of minimal 

pairs was proved independently by Yates [16] and Lachlan [10]. The Yates and 

Lachlan theorem gave a negative solution to Shoenfield's Conjecture, that  every 

monomorphism from a finite upper semi-lattice into the recursively enumerable 

degrees can always be lifted to embed any larger finite upper semi-lattice. From 

the methodological point of view, the construction of a minimal pair of recur- 

sively enumerable degrees incorporates a number of features not present in either 

the construction of an incomplete high recursively enumerable degree or the con- 

struction used to prove the Density Theorem. As we shall see, ~2 induction is 

sufficient to establish the existence of a minimal pair, and these two are equivalent 

over the base theory of E2 bounding. 

This paper is organized as follows. After the preliminaries, we investigate in 

Section 2 the subject of dominating functions in models of E2 bounding. We 

show that  there is a family of total recursive functions indexed by a proper H2 

cut such that  no total recursive function eventually dominates every function in 

the family. This result is optimal in the sense that there is no bounded l-I2 family 

of total recursive functions such that any total recursive function is eventually 

dominated by one in the family. Apart from the intrinsic interest provided by 

such combinatorial properties, the method used in the proof is later adapted 

to show that  no minimal pairs exist in any model of E2 bounding without E2 

induction. In Section 3 we show that minimal pairs exist in every model of E2 

induction. In Section 4 we show that there is no minimal pair in any model 

of E2 bounding in which E2 induction fails. In the final section, we return to 

the problem of Shoenfield's Conjecture, and show that even with the failure of 

the minimal pair theorem, the conjecture is still refuted within the theory of E2 

bounding. We provide two examples: one involves only meet operators, the other 

only join operators. We end by posing a number of open problems. 

Let us briefly recall the basic definitions and results. More details can be found 

for example in Mytilinaios [12] or in Chong and Yang [4]. Let P -  be the Peano 
axioms minus the induction scheme, and let IEn and BE,` denote respectively 

the induction and the collection schemes for E,` formulas. We work on models 

satisfying P -  + I E o .  By a result of Paris and Kirby [Kirby.Paris:78], for any 

n > l ,  

IS,` ~ BE,, ~ I~,`-1, 

but not conversely. 

We say that a set K is M-f in i t e  if it has a code in ~A. A set F is .~4-finite 
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if and only if there is a one-to-one ~0 function from a number a in M onto F.  

I C M is said to be a cu t  in M ,  if I is nonempty, closed downward and closed 

under the successor function. For our purpose, a cut is always a proper subset 

of the model under consideration. We say that a model M is a BEn m o d e l  if 

M is a model of P -  + BF, n but not IN,,. In any BE,, model M ,  there is a 2~, 

cut I and a E,~ map f :  I -+ M whose range is unbounded in M.  We denote by 

< a  the set {x E M:  x < a}. A subset A of M is b o u n d e d  in M if there is an 

a i n M  such that AC_<a.  A_C M is r egu la r  if for cvery a in M ,  AN < a i s  

M-finite. 

LEMMA 1 (H. Friedman): Suppose that M is a model of P -  + I~,~ (n >_ 1). 

1. I r A  is ~,, in M ,  then A is regular. 

2. I f  f is a partial ~,, function whose domain is bounded, then the range o f f  

is also bounded. 

As usual, a T u r i n g  f u n c t i o n a l  is a recursively enumerable set (I) of consis- 

tent quadruples, (x, y, P, N), where P and N are disjoint M-finite sets and x 

and y are numbers. We say that (I)A(x) = y if there are M-finite sets, P in- 

cluded in A, and N disjoint from A, such that (x, y, P, N) E (I). We say that  

B is (weakly)  r ecu r s ive  in A if for some Turing functional (I), (I) A = B; B is 

s t r o n g l y  r ecu r s ive  in A if both 

{P: P is M-finite and P C B} and {N: g is M-finite" and g n B = 0} 

are weakly recursive in A. Groszck and Slaman [8] showed that 'strongly recursive 

in' is a transitive relation on sets, while weak reducibility is not transitive in 

general. However, in any model of P -  + BE2, which is the main object of study 

in this paper, weak reducibility coincides with strong reducibility for recursively 

enumerable sets, although not necessarily for E2 sets. 

2. Dominating functions 

In this section, we study the problem of dominating functions in BE2 models. 

We will consider a bounded family of recursive functions and study the question 

of domination: Are these functions dominated by a single recursive function? Is 

every recursive function dominated by one of them? Although these questions 

are not directly related to infinite injury priority arguments, they provide insights 

to the intrinsic properties of BF.~ models, and the techniques used in the proofs 

are applicable to those presented in Section 4. 

Let J be any H2 cut in M ,  and suppose that J is defined by 

j E J r YuSv~p(j, u, v), 
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where ~a(j, u, v) is a A0 formula. Let a be an upper bound of J in 3/I. We 

consider a family of partial recursive functions {hi: i _< a} defined uniformly by 

hi(u) = / the least v such that ~o(i, u, v), if such v exists; 

( undefined, otherwise. 

We can make hi nondecreasing with respect to i and u. That  is, if i t < i and hi(u) 

is defined, then he(u) is defined and hi,(u) <_ hi(u), and for all i if u ~ < u and 

hi(u) is defined, then hi(u') is defined and hi(u') < hi(u). In fact, just change 

the above clause to "the least v such that (Vi' <_ i)(Vu' <_ u)(3v t < v)~o(i', u', v')". 
Notice that if j E J then hj is total on 3 t .  Moreover for points i E a - J ,  we 

note that  if f i(u) is undefined then, for any u' > u, fi(u') is undefined. This 

bounded family of uniformly recursive functions offers us some features which do 

not exist in models of full PA.  The following is one example whose proof uses 

an idea we will return to in the sequel. 

THEOREM 1: For any total recursive function g, there is a j in J such that 9 

does not eventually dominate hi. 

Proof: We prove by contradiction. Suppose that the statement is false. 

Then there is a recursive function g that eventually dominates all hj for j in 

J.  Therefore 

(Vi <__ a)(3n)(Vt)[hi(n)$ [t] V (hi(n)$ [t] A (Vm > n)hi(m) < g(m))]. 

The first disjunct refers to the i's not in J ,  while the second refers to those in 

J.  By BE2, there is an no which bounds all such n. Thus i C J if and only if 

hi(no).~, which implies that J is El ,  a contradiction. | 

A natural question to ask next is whether something stronger holds, i.e. 

whether one can have a family of functions such that every total recursive func- 

tion is eventually dominated by one in the family. The answer is no by the 

following slightly more general result. 

Let {f,~: m _< a} be a uniform family of partial recursive functions. Let J be 

the set 

g = {j <_ a: f j  is total} 

which is a l-I: subset of < a. Without of loss of generality, we may assume that  

for any m <_ a, the domain of fm is downward closed. We can also assume that  

at any stage s there exists at most one pair of numbers m and x such that m _< a 

and fro(x) is defined at stage s. 
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THEOREM 2: f f  J is not empty, then there is a total recursive [unction 9 which 

is not eventually dominated by any f j for j E J. 

Proof: We build a family of partial recursive functions {gn: n <_ a} such that  at 

least one of them is total and is not eventually dominated by any of f j  where j 

is in J .  For the rest of the proof, the letters m and n are used for numbers less 

than or equal to a, and m refers to the function f and n to g. 

We need to satisfy the following requirements, 

R(m,n,k) : g,~ is larger than fm at k different points 

(provided fin is total). The strategy to satisfy a single requirement R(m,n,k) is 

as follows. Suppose that  for all l < k, R(m,n,t ) is satisfied. Pick a new number 

x. Stop defining g,, at  x until fro(x) is defined. We call this action "g,, holds x 

on f,n for k" or "g,, is assigned on fm for k". When fro(x) is defined, we define 

gn(x) = fro(x) + 1. Thus the requirement R(m,n,k) is satisfied forever. We call it 

"gn releases fm for k". (gn can release f,,~ due to other reasons, when more than 

one requirement interacts.) In the case when fro(x) is undefined, gn may hold x 

on fm forever. Consequently, g,, becomes partial. 

To motivate the proof, we may view the functions {f,,~: m _< a} as ( a +  1)-many 

columns. At any stage, at any column, there is a number x, which is being held 

by a unique gn for some k. Thus we always have a one-to-one correspondence 

between gn and fro. When gn releases fro, we arrange some other g to hold 

f,~ according to a given priority list. The main concern is whether a given 

requirement loses its chance forever because of other higher priority requirements. 

Fix a priority list: 

Ro < R1 < ' " < R e  < " "  

where each index e is viewed as a triple (m, n, k). 

To simplify matters,  we adopt the following conventions. First, at any stage 

s, if g ,  holds x, then for any number y < x not mentioned by the construction 

9n(Y) will be defined trivially, say equals y. Also we assume that  the witness x 

for R(m,n,k) is automatically chosen as the least number at which both g,~ and 

f,n are undefined. 

Construction 

Stage 0: Assign 9,~ to fn for 0. 

Stage s: If there is a triple (m0, no, k0) such that  9no held an x on f,  no for k0 

at stage s - 1 and f ,  no (X) is defined at stage s. Then define 

grin (x) = finn (x) + 1 
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and release/too. Cancel (mo, no, ko> from the priority list. Go to switch opera- 

tion. If no such triple (m0, no, ko) exists, then go to stage s + 1. 

Switch Operation: Given mo and no as above. 

Consider those n and k so that 

�9 (mo, n, k> is not yet satisfied. 

�9 If gn is assigned to some fro. for k*, then (mo, n, k) has higher priority than 

<m',n,k'>. 
Choose nl and kl with these properties so as to maximize the priority of 

(too, nl ,  kl). Let f,m be the function that  is assigned to gin, if no ~ nl.  

Assign g,~, to fmo for kl. If no r nl ,  then assign gno to fro, for the least k 

such that  (ml,  no, k> is not satisfied. 

Note, if no is equal to nl then gno is assigned to f, no for the next value of k. 

Otherwise, a new g is chosen t'or fmo so as to maximize the priority of the next 

requirement for fmo to be at tempted.  

E.nd of Construction 

We now verify that  the construction works. 

CLAIM 1: There is an n <_ a such that gn is total. 

Proof of Claim 1: We prove by contradiction. Suppose for the contrary that  

for all n < a, gn is not total. By I~1 there is a least point x at which g,~ is not 

defined. Thus we have 

(Vn <_ a)(3x)[x is the least point at which gn is not defined]. 

Notice that  saying "x is the least point at which g,~ is not defined" is a ~ formula. 

By BZ2, there is a uniform upper bound of x for all n < a. Call it b. Since J is 

not empty, there is a total function f j .  At the stage fj(b) is defined, no gn can 

hold f j  below b, in other words, there is a function 9n which is defined up to b. 

A contradiction. 

CLAIM 2: Let gn be a total function (existence shown in Claim 1). Then gn is 

not eventually dominated by f j for any j in J. 

Proof of Claim 2: Let j be given and argue that  for all k in .M, the requirement 

R<j,,,,k) is satisfied. 

Suppose that  there is a k such that  the requirement R(j,n,k) is not satisfied. 

By IE1, we can pick the least such one. For simplicity let us also use k to denote 

it. 
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We say that a requirement R(j,n,k ) ac ts  d u r i n g  s tage  s if either the construc- 

tion assigns f2 to gn for k during stage s (and it was not so assigned during stage 

s - 1) or R(j,,~,k) is satisfied during stage s. 

By I~21 there is a stage So such that for any requirement Ra such that d < 

(j ,n,  k), Rd does not act after stage so. See Mytilinaios [12] for a discussion of 

finite injury arguments within IZ:I. 

Suppose that R(j,,~,k) is not satisfied at stage So. Then since gn is holding some 

fi for some I at stage so, g,~ must hold an fi for an l at so with (j, n, k) < (i, n, l), 

otherwise gn would not be total. Next, since f~ is total, f j  will be released at 

some stage t > so. At t, gn will be switched on f j  for k, to maximize the priority 

of the next requirement considered for fj .  By the totality of f j  again, R(j,n,k) 

will be satisfied. That  establishes Claim 2 and the Theorem. | 

Note that BE2 is necessary for the results above. Without B~2, the small 

family of dominating functions might exist. To be more precise, we look at a 

particular IE1 model .M not satisfying BE2, in which there is a A~(M) function 

p mapping a E2 cut I one-one onto M (in fact, the cut I is w). The model was 

first constructed by Groszek and Slaman in [8]. 

LEMMA 2: Let M be the model o r i e l  above. Let I be a ~1 cut and a an upper 
bound of I. Then there exists a family of partial recursive functions {h,~: n E I} 

such that any recursive function f is eventually dominated by some hn. 

Proof: Fix a recursive approximation p(n, s) of p(n). Define uniformly a family 

of recursive functions {g,~: n <: a} by 

I fp(,,,.~)(s) + 1, if ]'p(n,s)(s) is defined; 
gn(s) [ undefined, otherwise. 

Here {re: e e M} is a fixed list of all partial recursive functions in .hz[. Define 

hn(s) = g,~(l~t >_ s(g,~(t) is defined)). 

Consider an arbitrary e = p(n) in M;  let So be the stage such that for all s > So, 

p(n, s) = e. If fe is total, then for all s > So, 

hn(s) = gn(s) = re(s) + 1 

and h,~ is total. | 
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3. IF~2 and minimal  pairs 

In this section, we show tha t  the usual tree construct ion of min imal  pairs can be 

carried out  in any model  of I~2 .  Since the proof  is s tandard ,  we only present  

the skeleton. The  key point  is to verify tha t  ~2 induction is sufficient to prove 

the existence of the t rue path.  

THEOREM 3: Let .M be a model of P -  + IE2.  Then there exist recursively 

enumerable sets A and B such that if C <_T A and B then C is recursive. 

We const ruct  recursively enumerable  sets A and B to satisfy the following 

requirements  for all e in fl'l: 

pA : A C~be, 

P~ :B#Oe, 
Ne : If g2~(A) = k0~(B) -- h total,  then h is recursive. 

The  s t ra tegy  to satisfy pA is to pick an x, wait  for qh~(x) -- 0 and then put  x 

into A. The  s t ra tegy  to satisfy p U is symmetr ic .  The  s t ra tegy to satisfy N~ is 

to guarantee  tha t  once the length of agreement  

l(e, s) = m a x I x  : (Vy < x)(kO~(A; y)$= g2~(B; y)$ [s])} 

reaches a new value then we only allow elements to enter either A or B but  not 

both .  

We now proceed to the tree construction.  The  priori ty tree T is the full b inary 

tree. Fix a node ~ on T. If ]a I = 3e, then (~^(0) corresponds to the II2 outcome 

of N~., which says tha t  the length of agreement  is infinite; (~^(1) corresponds 

to the E2 ou tcome of N~_, which says tha t  the length of agreement  is finite. If 

I(~1 = 3e + 1, then r~A(0) is corresponding to the H1 outcome of p A  which says 

tha t  we wait  forever for (Pe(x) -- 0; (~A(1) is corresponding to the E1 outcome,  

which says tha t  we have seen the computa t ion  qhe(x ) -- 0 and successfully put  x 

into A. If  lal -- 3e + 2, then do the same for Pe B. We assume tha t  0 is to the left 

of 1 on tree T. 

At s tage s, we define a string 5~ of length _< s by induction. 5s is called the 

str ing v i s i t e d  a t  s t a g e  s. Define 5~(0) to be the root  of the tree T. Suppose 

a C 5~ and [a] < s. For ](~1 = 3e + 1, if there is an x E A,t [~] (I)~(x) = 0[s] and 

x C A, then a^ (1 )  c_ ~ .  Otherwise a^ (0 )  C_ 5s. A similar definition applies to 

[a[ = 3 e + 2 .  For [hi = 3e, i f l ( e , s )  >l (e , t )  for e v e r y t  < s s u c h  tha t  a C_ 5~, 

then a ^ ( 0 )  C_ ~i~. Otherwise,  let hA(l)  C_ 5~. 
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Cons t ruc t ion  

At s tage s, find the C_-least a C ~8 such tha t  [a[ = 3e + k (k e {1,2}) and 

(fs([a[) = 0 for which there exists an x in .h4 [~] such tha t  (I)~(x) = 0[s] and x is 

bigger than  the restraint  

r ( a ,  s) = max{t :  t < s and (it is to the left or a substr ing of a}.  

Pu t  the least such x, if any, into A if k = 1, or B if k = 2. Otherwise,  do nothing. 

End of Cons t ruc t ion  

We now verify tha t  the construct ion works. Let the t r u e  p a t h  A be the 

lef tmost  pa th  which is visited unboundedly  often. First  we show tha t  A exists. 

This  is the place where we make crucial use of I~2 .  

LEMMA 3: For any e E .M, there is a unique a on T of  length e such that 

(1) for any s there is a t > s such that a c ~t, 

(2) there is a stage to such that for any fi to the left o f  a and for any t > to, 

Proof: Fix e in .hal, and consider the set of strings 

{~: Iol <-- ~ ^ (Vs)(~t > s)(o c ~,)), 

which is a nonempty  l-I2 bounded set. By I ~ 2  there exists a lef tmost  element.  

Call it a .  By definition, (1) is satisfied. To show (2), consider the set 

x = {~: I/~1 _< ~ A ~ <L ~} 

which is M-f in i te .  By the definition of a ,  we have 

Vfl C X 3 s V t  > sfl (~ St. 

By BE2 there is a stage to such tha t  for all t > to, ~ ~ 6t. T h a t  establishes the 

lemma.  | 

Finally we argue t ha t  along the true pa th  A, every requirement  is satisfied. 

LEMMA 4: For any e in A,'[, the requirements p A ,  p B  and Ne are satisfied. 

Proof: Let us consider pA (pB  is symmetr ic) .  Suppose a C A and ]a[ = 3e + 1. 

If  a^ (1 )  C A then clearly Pe A is satisfied. So let us assume tha t  a^ (0 )  C A. In 

this case 2~4 [~] n A is empty.  If (I)~ = A, then we may  pick an x E .M [~], such tha t  

(I)~(x) = 0 and x is larger than  any t at  which (it is to the left of a .  At any s tage 
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s such that  Ce(x) = 0[s] and a is visited at stage s, we will put x into A. So pA 

is satisfied. 

For requirement Ne, suppose k~(A) = k~(B) = h and c~ is the string of 

length 3e on the true path A. We first observe that  a^(0)  C A, because the 

length of agreement is unbounded. Next we check that  h can be computed 

recursively as follows. Let So be the stage after which no node fl to the left of a 

is visited. To compute h(p), just wait for a stage s > so, at which c~ is visited and 

l(e, s) > p. Then the typical argument as in the classical recursion theory shows 

that  h(p) = ~g~(A;p)[s]. This establishes the lemma and the theorem. | 

4. BE2 and minimal pairs 

THEOREM 1: Let M be a B~2 model. Then there is no nontrivial recursively 

enumerableminimal pair in A,~. 

By Ambos-Spies, Jockusch, Shore and Soare [1], the nouprompt recursively 

enumerable degrees are the halves of minimal pairs. So we shift our attention to 

prompt  sets. We will show that  there is no nonprompt set in A4. First let us 

recall the following definition. 

Definition 1: Let f be a total recursive function and W be a recursively enu- 

merable set. We say that  a recursively enumerable set A is f - p r o m p t  for  W, 

if 

(3s)(~x)(x  enters W at stage s and A t x[s] ~ A r x[f(s)]). 

We say that  A is f - p r o m p t  if A is f -p rompt  for all infinite recursively enumerable 

sets W. We say that  A is p r o m p t ,  if there is a total recursive function f such 

that  A is f -p rompt .  

LEMMA 5: Let .s be a B~2 model. Then any recursively enumerable set A in 
M is either recursive or prompt. 

Proof: First let us fix some notations. Let I be a ~E2 cut and f :  I -+ M be a 

~E2 cofinal function. Set f'(_, _) to be a recursive approximation of f ,  defined on 

<__ a x AJ, such that  for all i in I ,  limb f ' ( i ,  s) = f ( i ) .  Choose a to be an upper 

bound of I;  and let tAs}seM be a fixed recursive enumeration for the recursively 

enumerable set A such that  at any stage, at most one number enters A. We 

adopt the same assumption for the enumeration of recursively enumerable sets 

W as well. For the rest of the proof, the letters m and n will refer to numbers 

less than or equal to a. 
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We build a family of a-many recursive functions {g~: n _< a} (some of which 

may be partial), such that  either 

(a) A is recursive; or 

(b) A is gn-prompt for some n _< a. 

We a t tempt  to make (b) hold for all n _< a. Thus we try to satisfy for all e in A4 

and n < a: 

Re,n : A is 9~-prompt for We. 

S t r a t e g y  for  a s ingle  r e q u i r e m e n t :  At stage s, we say that  requirement Re,n 
r e q u i r e s  a t t e n t i o n  if A is not yet g~-prompt and either 

�9 (Condition (1)) There is no restraint on gn(t) for any t, and there is an x 

entering We at stage s; or 

�9 (Condition (2)) There is a stage t < s at which we put a restraint on 9n(t) 
because some x entered We at stage t, and there is a y < x which enters 'A 

at stage s. 

When the requirement Re,n requires attention, we take the following actions. 

If condition (1) holds, then we add a restraint on 9n(s), i.e. keep 9n(s) undefined 

until A changes below x, at which time Re,~ will require attention again because 

condition (2) holds. We will refer to this action as "g~ holds s for x and We". 

If  condition (2) holds, then we cancel the restraint on 9,~(t), and define 9n(t) = 
s. This action will satisfy the requirement Re,~ forever. 

In any case, if for all t' < t, gn(t I) is not restrained, and 9n(t) is undefined, 

then define gn(t) = s. 

S t r a t e g y  for  a b lock  o f  r e q u i r e m e n t s :  The main concern for the single 

strategy is that  Re,n may make g,, partial. In fact this argument will break 

down in models satisfying IE2 because every 9 will be partial. The solution is 

to make a block of requirements hold a single function. Let us look at a block of 

requirements. Fix a block B = {e: bl _< e < b2). We consider requirements Re,~ 

for e in B. In the next few paragraphs, the letters e and d refer to numbers in 

B. 

At stage s, if there is no gn holding a number for any x and We, then just 

proceed as in the single strategy. Suppose that  there exists a t less than s and a 

gn holds t for some x and We. Then we act depending on the following cases. 

CASE 1: (switch) There are numbers d, y > x, and m, such that  Rd,m requires 

attention because y enters Wd at stage s, i.e., condition (1) holds. 

In this case, we cancel the restraint on 9n(t), and add a restraint on gin(s). 
Informally, we have switched the restraint from g,~(t) to gin(s). Note that  m can 

be equal to n. 
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CASE 2: (win) There is a y <_ x entering A at stage s, such that  R,,,~ requires 

attention because of condition (2). In this case take the same action as in the 

single case. 

O u t c o m e s  of  a b lock  of  r e q u i r e m e n t s :  Before we organize blocks dynami- 

cally, let us investigate the final outcomes of a block of requirements. As before, 

we fix a block B and letter e refers to a number in B. 

First notice that  for any e and n, there is a stage s such that  either A is g,,- 

prompt for W'e at stage s or, for all t > s, A is not 9~-prompt for We at stage 

t. By B~2, there is a stage So after which Case 2, the win case, never happens. 

After stage so, if there exist only boundedly many stages at which the switch 

case happens, then there is a stage s > So after which no more actions are taken. 

In this case, we say that  block B has a ~2 outcome. The global effect is that  

for some (unique) n, gn(t) is restrained forever. 

On the other hand, if there are unboundedly many switches, then we say that  

the block B has a H2 o u t c o m e .  In this case, we argue that  A is recursive: 

CLAIM 3: I f  for any stage s there is a t > s such that a switch happens at t, then 

A is recursive. 

Proo f  of  Claim 3: First observe that  under the assumption, there are unbound- 

edly many y's such that  each y entering We for some e in B causes a switch. 

(The worry is that  there may be cut-many y's which act cofinally many stages.) 

Otherwise, suppose that  all switches are caused by numbers less than x0. By reg- 

ularity of recursively enumerable sets under IE1, the recursively enumerable set 

[.J~cB We restricted to x0 is M-finite. An easy application of IE1 shows that  the 

stages at which switches happen are also bounded, contradicting the assumption. 

Now to recursively decide whether a number x is in A, just wait until a stage t 

after so at which some y > x causes a switch. Then x is in A if and only if x is 

in At, since otherwise we will see a win case, contradicting the choice of so. This 

establishes Claim 3. 

Dynamic a r r a n g e m e n t  o f  b locks:  Now we organize the blocks in a E2 way. 

At each stage we have a many blocks Bi,s : i <_ a. Each Bi,8 contains numbers 

e in the interval [bi,s,bi+l,s). We may imagine the bi's as movable markers. 

Each marker b,,s gets pushed to a new position if either for some i' <_ i, f ' ( i ' ,  s) 

changes, or some requirement Re,,, in block Bi,,s, where i' < i, acts at stage s. 

More precisely, bi,s is the maximum of the numbers f ' ( i ,  s) + 1 and the largest 

stage t at which some requirement belonging to a higher priority block Bi,,s acts 
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at t. When bi,s changes, we initialize all requirements Re,n : e > bi,s. Let J 

denote the set 

J = {j: (3s)(Vt > s)bj,t = bj,s}. 

Observe that  J is not empty. For example, 0 is in J because b0 settles down at 

f(0) .  J is downward closed by definition, and J is a subset of I .  We now argue 

along J that  the construction works. 

CASE 1: J has a largest element J0. In this case, we can argue A is recursive as 

before. Let b be the final position of the jo-th marker. BE2 shows that  there is 

a stage after which no more win cases can happen for requirements Re,n : e < b. 

Thus, there must be unboundedly many switches in block Jo - 1. By Claim 3, A 

is recursive. 

CASE 2: J is a cut. In this case, we argue that  A is prompt  for some gn. As 

J is a subset of I ,  J is a proper subset of a. Observe that  as each block of 

requirements holds only one gn, there is some n* < a such that  gn. is total. We 

argue this by contradiction. Suppose that  for all n _< a there exists an x such 

that  for all y > x, g,(y)  is undefined. By BE2, there is a uniform bound for 

these x's,  which is impossible. 

For simplicity, let us use g to denote gn' .  We claim that  A is g-prompt.  

CLAIM 4: A is g-prompt. 

Proof of Claim 4: Suppose We is infinite. We show that A is g-prompt for We. 

By the definition of J ,  e belongs to some permanent block Bj. Fix a stage s 

after which bi+1 never moves. This implies that  no action will be taken by any 

requirement Re,,~ for e E Bj. On the other hand, after stage s, We will require 

attention. This causes an action, contradicting the choice of s. This ends the 

proof of Lemma 5. II 

LEMMA 6: If both A and B are prompt, then there is a nonrecursive recursively 

enumerable set C below both A and B. 

Proof: Without of loss of generality, we may assume that  both A and B are 

g-prompt for some total recursive function g (otherwise, just take the maximum). 

We build a recursively eimmerable set C satisfying the nonrecursiveness require- 

ments: 

P e : C # ~ e .  

To make C recursive in both A and B, we use the permitting method. There is 

no interference between different strategies. 
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The strategy to satisfy Pc goes as follows. Wait for a stage s, at which (I)c(X) = 

O[s] for some x E .hi [e]. Then wait until stage g(g(s)), and see if both A and 

B change below x. If they do, then put x into C and satisfy the requirement 

forever. 

By permitt ing, C is recursive in both A and B, hecause if A [ x = As r x then 

x E C if and only if x C Cs. The same applies to B. To see that  C satisfies I),~, 

first notice that  each requirement only puts at most one number into C, so that  

if the recursively enumerable set 

w = {x �9 MltCl: ~c(X) = 0} 

is .h/l-finite, then PC is satisfied. Suppose W is not .h/l-finite; then by 

g-promptness,  the recursively enumerable set 

V = (x �9 W: (3s < t)(3y < x)((~e(x) = 0[s] A y �9 At - A t - , }  

is not .h/l-finite either. By the g-promptness of B, one of the elements in V will 

be permit ted by B before stage g(g(s)), where s is the stage when x enters W, 

thus g(s) is the stage when x enters V. This ends the proof of Lemma 6, and 

hence Theorem 4. II 

COROLLARY 1: Over the base theory P -  + BE2, the existence of a recursively 

enumerable minimal pair is equivalent to I~2. 

The above result on minimal pairs can be generalized to branching degrees in a 

special B~2 model. This model was first studied by Mytilinaios and Slaman [13], 

where they constructed a BE2 model "h/l in which every subset of the natural 

numbers w is coded on w. We shall call that  model a s a t u r a t e d  model. The 

saturated model has other properties. For example, 

LEMMA 7 (Mytilinaios and Slaman [13]): In a saturated B~2 model .M, every 

recursively enumerable set is either complete or low. 

By noticing that  if A is low, then any H A formula is equivalent to a A2 one, 

we have 

COROLLARY 2: Let A be an incomplete recursively enumerable set in a saturated 

BE2 model "h/l. Then M satisfies BE  A. 

Before we relativize the construction in Theorem 4 to any incomplete recur- 

sively enumerable set A, we first recall a theorem due to Lachlan. 
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THEOREM 5 (Lachlan [10]): Ira,  b are recursively enumerable degrees and d is 

a degree less than or equal to a and b, then there is a recursively enumerable 

degree c such that d _< c, c _< a and c <_ b. 

The proof is exactly the same as presented in Soare [Soare:87]. The only new 

observation is the reduction showing D _< C is in fact strong Turing reduction. 

Other reductions do not matter, as they are all among recursively enumerable 

sets. 

THEOREM 6: Let M be a saturated B~2 model. Then there is no branching 

recursively enumerable degree in M .  

Proof: Relativize the proof for minimal pairs to a potentially branching degree 

a. Then apply Lachlan's Theorem. II 

It should be noted that the above proof applies to all low degrees in any BE2 

model. 

5. BZ2 and Shoenfield's Conjecture 

Historically, after Sacks proved the Density Theorem, Shoenfield made his con- 

jecture which says that the recursively enumerable degrees form a dense structure 

as an upper semi-lattice. 

Shoenf ie ld ' s  Conjec ture"  Fix any two finite upper semi-lattices with the 

least and greatest elements (usl) P C Q. Every usl embedding i of P into the 
recursively enumerabledegrees 7~ can be extended to an embedding j of Q into 

R. 

If we only require i and j to preserve partial order (not necessarily the join 

operation), then we have a weaker form of Shoenfield's Conjecture. 

In classical recursion theory, the failure of Shoenfield's Conjecture was first 

demonstrated by Lachlan [10] and Yates [16] when they proved the existence 

of minimal pairs. In the case of a B~2 model, we have the Density Theorem 

holds [7] and yet the minimal pairs do not exist. It is natural to ask whether 

Shoenfield's Conjecture indeed holds in BF.2 models. We give two examples of 

the failure of Shoenfield's Conjecture. 

5.1 AN EXAMPLE USING MEET OPERATORS. First we use the following 

example to demonstrate the failure of the weaker version of Shoenfield's 

Conjecture. 
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THEOREM 7: Let .M be a model satisfying I~i .  Then there are pairwise incom- 

parable recursively enumerable sets A, B and D such that for any recursively 

enumerable set C, if C <_~ A and C <_w B then C <_~ D. 

Remarks: 

(1) If.M satisfies BE2, then we do not need to distinguish between strong and 

weak reducibility for recursively enumerable sets. Thus the statement of 

Theorem 7 can be changed into a theorem about recursively enumerable 

degrees. 

(2) This result refutes the weaker form of Shoenfield's Conjecture, because the 

following extension of embedding is not possible. 

A B D A B D 

. 

We have three pairs of incomparability requirements: 

Pe : Oe(A) # D, 

C2e : '~c(A) # B, 

Re: Oc(D) r A, 

Oe(B) :~ D; 

�9 c(B) ~- A; 

Oe(D) r B. 

We also need a requirement for the meet: 

Se: If re(A) = re(B) = f and f is total, then 3Ae(Ae(D) = f). 

Since we are working under IE1, we need to make sure that if Fe(A) = Pc(B) 

and total then the length of agreement is unbounded. (Note that it is an easy 

application of BE2.) Therefore we add another pair of lowness requirements: 

N(Ae,x) : If 3~176 re(A; x)$ [s], then re(A; x)$, 
B N(e,~ ) :If  3~176 re(B;z)$ [s], then re(B;x)$, 

where 3 ~ stands for "there exist unbounded many". The Turing functionals 

Oe, kge, Oe and Fe are given. We will construct the recursively enumerablesets A, 

B and D and the Turing functional A~. 

Description of a Single Strategy. In the following discussions, we drop all 

indices. We will use the letters P, Q, R, S and N to refer to our strategies to 

satisfy their associated requirements. 
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The strategy to satisfy N A is the usual preservation strategy. At stage s, if 

r(A;x)$ [s] then preserve A up to the use "),(A;x)[s]. The strategy for N/~ is 

symmetric. 

The strategy to satisfy S is as follows. We enumerate a functional A and ensure 

that if F(A) and F(B) are total and equal, then their common value is equal to 

A(D). In the enumeration of A, we measure the length of agreement l between 

F(A) and F(B). If the length of agreement l increases, then define A(D; y) = 

F(A; y) for all undefined y < l with a use 5(D;y). The use is determined as 

follows. The first time that we define 5(D;y),  we give it a value which is big 

during that stage and say that we set the use for A at y. During subsequent 

stages, not necessarily expansionary, if F(A; y) and F(B; y) are both undefined 

or both defined with a common value which is incompatible with A(D; y), then 

we enumerate 5(D; y) into D and reset the use for 5(D; y) to a new big number. 

This is essentially the strategy introduced by Fejer [6]. The global effect of S is 

to put infinitely many numbers into D. 

We now look at the incomparability requirements and the possible conflicts 

with S. They are all based on the Fricdberg-Mu~:nik diagonalization strategy. 

For simplicity, we only mention one strategy for each pair of requirements, the 

other one being symmetric. 

We begin with the simplest requirement P. The strategy for O(A) :~ D is as 

follows. Pick a follower x targeting D. Wait until x is realized, i.e. O(A; x) = 0, 

then put x into D and preservc A up to ~o(A; x). Putting x into D may injure 

some computations A(D; y) whose 5(D; y) > x. But this conflict is not serious, 

as we can redefine the value A(D; y). Since the action of P does not change the 

values of F(A; y) and F(B; y), we do not need to change the use 5(D; y). (Note: 
Keeping the same use here is consistent with the choice of uses described in S- 

strategies.) The requirement P has a finitary positive effect on D and a finitary 

negative effect on A or B. 

The strategy for Q is similar. Consider the requirement tI,(A) 5/: B. Pick a 

follower x targeting B. Wait until x is realized. Put  x in B and preserve A up 

to r x). As the S requirement does not restrain either A or B, putting x in 

B may injure S. There may exist some y such that A(D; y)J,= F(B; y), F(A; y)j" 

and x < "y(B; y). When this happens, Q must put a(D; y) in D to destroy the 

computation A(D; y). The global effect of Q is also finitary. 

The strategy for R is more complicated than the others. Consider the 

requirement ~(D)  r B. R acts as in Q. However, restraining D may cause 

some problem. When the follower x is enumerated into B, it may injure some 
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computation F(B; y) as analyzed in Q. Then (f(D; y) should enter D to correct 

A(D; y). If 5(D; y) < 0(D; x) then R is unable to preserve O(D; x). 

Before we modify R, we take a closer look at the conflict between R and a 

single S requirement. Fix a priority list: 

P0 < Qo < Ro < S0 < No A < No" < P1 < Q, < R1 < Sl < N~ < . - . .  

Without loss of generality, let us assume that at any stage s, the domains of 

the functionals F(A), F(B) and A are downward closed. R picks a follower 

xo targeting B and waits until Xo is realized, say at stage so. If there is no 

y �9 dom F(B) \ dom F(A) such that Xo < 7(B; y) and 5(D; y) < 0(D; Xo), then 

just put Xo into B and act as in Q. Suppose there is such a y. We will say that 

y (or the requirement S) s tops  Xo f rom e n t e r i n g  B. Then R will not put xo 

into B yet. Instead, R f reezes  t h e  s e t t i ng  for Xo, i.e. R sets the restraints 

rB = max{~,(B; z): z �9 dom F(B)}, ra = max{~(A; z): z �9 dom F(A)} 

on B and A, respectively. R also picks a new xl targeting B, which is larger 

than any number we have seen in the construction. Suppose that Xl is realized 

at sx (otherwise R is satisfied easily). If there is a stage v E (s0, sl) at which the 

length of agreement I recovers at v, then we can preserve the A-side computation 

F(A; y) -- A(D; y) instead of the B-side. Hence x0 can enter B at v, and R is 

satisfied (R nceds to set a restraint on A to preserve l, so that no (f(D;y) < 

O(D;xo) wants to enter D). If I does not recover at any v, then xl can enter 

B at stage Sl as there are no new computations A(D; y) being defined, and the 

existing computations of A(D; y) will not stop xl from entering B. 

In other words, we may think of R having two substrategies Ro and R1. Ro 

has higher priority than R1. R0 has a follower x0 which either enters B (in this 

case, R is satisfied and we do not need RI), or is held by a finite restraint of S 

(in this case Ro shows that S has a finitary outcome and leave the job to R1). 

R1 has a follower x] larger than the finite S-restraint. If Ro fails, then xl will 

be the witness for R. 

When there are more than one S strategy, we need to have more substrategies. 

In general, requirement Re has at most e many substrategies Re,n for n <_ e - 1. 

Re,m has higher priority than Re,, if m < n. Each Re,, has its own follower 

xe,,~ and works under the assumption that Re,,, (m < n) are held by some 

S-requirements that have higher priority than Re. 

Construction 

Stage 0: Ao = Bo = Do = 0, Ae(Do; x) is undefined for all e, x E M .  
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Stage s + 1: Given As, B.9 and Ds. For each e < s, Se has defined Ae(Ds; x)[s] 

and Re has had subrequirements Re,o, . . . ,  Re,,~. Each Re,,~ has a follower xe,,,. 

For n < ne, xe,n is realized and xe,n~ is not. 

To simplify the description of actions, we adopt some conventions. 

(1) At each stage, at most one requirement requires attention (otherwise we 

just take the least one). 

(2) We automatically select followers for requirement Pe, Qe and Re (one for 

each of substrategies Re,,) such that the new followers are big, i.e. larger 

than any number we have seen in the construction, in particular larger 

than the restraints. We also assume that Re starts its first substrategy 

Re,o automatically. 

(3) At the end of each stage, define Ae(D, y) for all y such that y < l(e, s) and 

Ae(D; y)[s] is not defined. The use ~(D; y) is selected as in the description 

of S-strategies. 

(4) When a strategy or an R-substrategy acts, all requirements and substrate- 

gies of lower priority are initialized, i.e. cancel all followers, restraints and 

A's definitions. 

(5) When we set a restraint on A, B or D, we set it large enough to preserve 

the necessary computations. In fact it is safe to set it to be s, which is the 

current stage number. 

We say that requirement N~,~) (or N~,~)) requires  a t t e n t i o n  at stage s if 

F~(A; x) (or Fe(B; x)) is undefined at stage s - 1 and it is defined at stage s. 

We say that requirement Pe (or Q~) requires  a t t e n t i o n  at stage s if Pe (or 

Qe) has a follower x which is realized at stage s. 

We say that substrategy Re,,~ (n <_ en) requires  a t t e n t i o n  at stage s if either: 

CASE 1: There is an Sd which stops x~,n from entering A or B at stage s - 1 

and s is a d-expansionary stage, or 

CASE 2: Xe,  n is realized at stage s. 

At stage s + 1, if no requirement requires attention, then go to the next stage. 

Otherwise, we take the following actions. 

Suppose that N A requires attention. Then restrain A. (e,~) 
Suppose that Pe : Be(A) # D requires attention. Then put the follower x into 

D, set restraint on A and redefine Ae(D; y) as in the description of P-strategies. 

Suppose that Qe : ~e(A) # B requires attention. Then put the follower x into 

B, set restraint on A and reset Ae(D; y) as in the description of Q-strategies. 

Suppose that Re,,~, which is a substrategy for Re : ee(D) :/= B, requires 

attention. We do as follows. 
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If Case 1 happens, then if no S-requirements stop gge,n, then put Xe,n in B and 

preserve D and A; else freeze the setting for Xe,n. 

If Case 2 happens, then xe,n, is the follower being realized. Check whether or 

not there is an S-requirement which stops Xe,ne from entering B. If yes, then 

freeze the setting for Xe,ne and start  a new substrategy Re,n,+l. If no, put Xe,n, 

into B, and set restraint on D and A. 

End of Construction 

We now verify within IE1 that  all requirements are satisfied. The following 

lemmas are the key ingredients in all Friedberg-Muenik type finite injury argu- 

ments. 

LEMMA 8: Ira requirement acts or is initialized not more than k times for some 

k in ~4, then there is a stage So after which it never acts or is initialized. 

Proof'. Notice that  the function F: < k --+ M ,  defined by F(i)  = t if the 

requirement acts the i-th time at stage t, is a partial E1 function. By Friedman's 

Theorem, the range of F is bounded. Any upper bound So of the range suffices. 

II 

Notice that  the number k in Lemma 8 can be replaced by a E1 function k(e), 

where e is the index of the requirement. 

LEMMA 9: There is a total recursive function f: ]Vl -+ M such that for each e, 

the e-th requirement in the priority list acts or is initialized at most f (e)  many 

times. 

Proof: Consider the function f :  2r --~ jgl defined by the following recursion: 

f ( o )  = 1; 

f ( e  + 1) = f(e).  (e!). 

IE1 shows that  f is a total recursive function. We now argue that  f is the 

function we want. 

Suppose for the sake of a contradiction that  there is a requirement which acts 

or is initialized more than f (e)  many times. By construction, such requirements 

form a Pq set. By the least number principle, there is a least such e, call it e0. 

By Lemma 8, there is a stage So after which no requirement of higher priority 

acts. If  the e0-th requirement is not of type R, then it can act at most once after 

So. If it is of type R, say it is Re for some e < e0. Let us count the number of 

actions of Re after so. The number of actions of Re is the sum of the number of 
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actions of its substrategies. Notice that  at any stage, there are at most e many 

substrategies Re,n. For each substrategy Re,,~, if Re,m (m < n) stops acting, then 

Re,n can act at most e - n times (because there are only e - n many 'unfrozen' S 

requirements). Thus the total number of actions of Re is less than e! after stage 

So. So the total number of actions of Re is bounded by 

f(eo - 1). (e!) < f(eo - 1). (eo!) = f(eo) 

which is a contradiction. II 

LEMMA 10: Every requirement is satisfied. 

Proof: Fix an e E .M. For any positive requirement, say Re, by Lemma 9 and 

Lemma 8, there is a stage so after which Re never acts. If Re is unsatisfied, then 

Re will have a substrategy Re,n which has a follower xe,n and Xe,n cannot get 

canceled or enter B after so, so xe,n is never realized. Thus Re. is satisfied. The 

N requirements are satisfied by similar reasons. 

For the requirement Se, let so be the stage after which Se never gets initialized. 

Suppose Fe(A) = F~(B) -- f which is total. We show that  Ae(D) = f .  Fix a 

y E .M. There is a stage sl after which no requirement with higher priority than 

N A and N B ~e,y+l) ~e,~+t) acts. Since F~(A) = Fe(B) is total, for any stage t > st,  

l(e, t) >_ y. So Ae(D; y) is defined to be the common value and its use 6e(D; y) 

never moves by the convention we have made. This ends the proof of the Lemma 

and also the proof of tile Theorem. II 

5.2 AN EXAMPLE USING JOIN OPERATORS. We now give another example 

of the failure of Shoenfield's Conjecture. We show that  in any model satisfying 

P -  + IE1, the following weaker version of the Slaman-Steel Theorem [14] can 

be shown. 

THEOREM 8: Let M be a model satisfying P -  +IE t .  Then there are recursively 

enumerable sets A and B such that 0 < B < A and for any recursively enumerable 

set W < A, B ~ W  < A. 

Slaman and Steel proved Theorem 8 without the restriction that  W be recur- 

sively enumerable. As we shall see later, the set A is low, therefore ~;he weak 

reducibility for sets below A coincides with the strong ones. Thus we have a 

corresponding version of Theorem 8 for recursively enumerable degrees. 

We build recursively enumerable sets A and B together with Turing functionals 

F and A e for each e in A4, such that  

B = r ( A )  
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and satisfying the following requirements: 

P e : B # ~ e ,  

N~: [We = ~e(A) and Oe(BW~) = A] ~ Ae(W~) = A, 

R(~,~ : I f  3~176 ~e(A;x)$ Is], then r 

where ~e, ~e and e e  are fixed enumerations ofTuring functionals. Since A ~T B 

and B is not recursive, the requirement Are ensures that A ~T B. The functional 

ffJe is introduced so that we have better control on We. And the lowness require- 

ments R are added for the same purpose as explained in Theorem 7. 

D e s c r i p t i o n  of  S t r a t eg i e s .  At every stage s, we define F(A; x) = B(x) with 

appropriate use ~/(A; x) for all x _< s. We will keep this equality at any stage 

t > s. Thus whenever a number x enters B at stage t, we must put a number 

less than or equal to ~(A; x) into A and reset F(A; x). This will make B = F(A). 

The strategy to satisfy R(e,~) is the normal preservation strategy. When we 

see a computation ~e(A; x)$ [s], we restrain A up to the use ~ ( A ;  x)[s]. 

The strategy for Ne is as follows. Wc drop the indices in the discussion. We 

think that W = ~(A). At stage s we measure two lengths of agreement, 

ll(e, s) = max{y: (Vz < y)(ffJ(A; z)$= W(z)[s]} 

and 

l(e, s) = max{y: (Vz < y)(O(BW; z)$= A(z)[s] A O(BW; z) < / , ( e ,  s))}. 

When l(e, s) increases, we set A(W; z) = A(z) for all undefined z up to l(e, s) 
and define the use 5(W; z) of the computation to be larger than O(BW; z). We 

also keep this equality at any stage t > s. The effect of N, when the injury is 

absent, is to enumerate more and more axioms into A. 

The first a t tempt  for Pc is the usual Friedberg Mu~nik diagonalization strat- 

egy. Pick a follower x not yet in B, wait until x is realized, i.e., O(x)$= O, then 

put x into B. However, this action conflicts with N. Suppose x is realized and 

x enters B. To keep F(A) = B, we need to put a number less than or equal to 

"y(A; x) into A to correct F(A; x). But A(W; ~(A; x)) may be defined already (if 

not, then there is no conflict) and W may not change below ~(W; o'(A; x)), then 

we have no chance to reset A(W;-y(A; x)). 

To solve this conflict, we modify the strategy P as follows. Let us consider 

only one requirement N at this moment. P first picks a pair of numbers (y, x) 
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such that  y r A is targeting A and x ~ B is targeting B respectively. Unless the 

requirement P acts, we will ensure that  

(1) x C B a n d y C A ;  

(2) if t~(BW; y) is defined then 9(BW; y) < x and O(BW; y) < (f(W; y). 

We need to argue that  such a pair (y, x) can be found. Initially when we choose 

x and y, if O(BW; y) is defined, then we just pick x > 0(BW; y), and preserve A 

up to max{r  z): z ~_ 8(BW; y)} and preserve B up to 0(BW; y). Then either 

0(BW; y) never moves (so (2) is satisfies), or W changes below O(BW; y). Thus 

kO(A) r W forever, so N is satisfied. 

Now let us suppose that  0(BW; y) is undefined, but after x is chosen, 0(BW; y) 
is defined and is larger than x. Then we discard the old number x and choose 

a new number x ~ > 0(BW; y) and proceed as before. In any case, we can select 

the pair (y,x) satisfying (1) and (2). 

The action of P is as follows. By the choice of the pair (y, x), when x is realized, 

0(BW; y) is either undefined or it is less than x. Then we can just put y into 

A and x in B, restrain B up to O(BW; y) and redefine F(A; x). This action will 

satisfy P.  I t  is also compatible with N. The reason is as follows. At the stage of 

action, 

O(B W; y)  = 0 r 1 = A(y). 

There are two possible cases: 

CASE 1: W does not change below 0(BW; y). Then due to the restraint on B, 

O(BW;  y) = O(BW; y)[s] = 0. Therefore, O(BW) ~ g. 

CASE 2: W changes below 0(BW; y). By condition (2), 0(BW; y) is less than 

5(W; y). Thus we (:an redefine A(W; y) too. 

Construction 

Fix a priority list 

No < Po < Ro < NI < PI < RI < "". 

Stage 0: Set A0 = B0 = 0. Set F(A; y)[0] and A~(W; x)[0] to be undefined for 

all x, y E .h/[. 

Stage s + 1. Given As, B.~, F(As; y) for y < s + 1 and A~(We; x) for all e, x < 

s + l .  

We say that  a requirement R<e,~> r equ i r e s  a t t e n t i o n  if O~(A; x) is defined at 

stage s. 

We say that  a requirement Pc r equ i r e s  a t t e n t i o n  if it is not satisfied yet and 

one of the following conditions holds: 
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(A1) Pe has no pair of followers (y, x); or 

(A2) Pe has a pair of followers (y, x), and there is an i <_ e such that O~(BW~; y) 
is defined at stage s. 

(A3) Pc has a pair of followers (y, x), condition (A2) does not happen, and 

(I)e(x)$= 0 at stage s. 

If no requirement requires attention, then define F(A; s) = 0 with use s + 1. 

If there is an e less than or equal to s such that l(e,s) increases, then de- 

fine Ae(We; z) = A(z) with use he(We; z) = s (so in particular, for all z _< s, 

z) > O(BW ; z)). 
If P~ requires attention, then we act based on the conditions. 

CASE 1: Re requires attention because (A1) holds. 

Then pick a fresh pair (y, x), which means: (i) y r A8 and x ~ Bs; (ii) for all 

i < e, y and x are larger than.the restraint set by Pi on A and B respectively; 

(iii) x is larger than Oi(BWi; y) if such 0i is defined at stage s; (iv) (y, x) has not 

been chosen by Pi for i _< e. Set a restraint on B up to 

max{Oi(BWi; y):i < e if it is defined} 

and set a restraint on A up to 

max{r z): i < e, Az <_ Oi(BWi; y)}. 

Initialize all unsatisfied requirements Nj and Pj for j > e, that is, for Nj, start 

over the definition of Aj(Wj);  for Pj, cancel the pair of followers (y, x). Extend 

the definition of F(A) and A~(Wi) for i <_ e as before. 

CASE 2: Re requires attention because (A2) holds. 

Then cancel follower x, reselect a fresh x t to replace x (so in particular, x r > 

Oi(BWi; y)). Set the restraint on A and B. Initialize all unsatisfied Nj and Pj 

for j > e. Extend the definition of F(A) and Ai(Wi) as in Case 1. 

CASE 3: P~ requires attention because (A3) holds. 

Then put y in A and x in B. Keep the restraint on B up to O~(BWi;y). 
Initialize all unsatisfied Nj and Pj for j > e. Set F(A; x) = 1 with empty use; set 

F(A; z)[s + 1] --- F(A; z)[s] with the same use "~(A; z)[s] for z r x and z < s; set 

F(A; s) = 0 with use s. Define A~(Wi) as in Case 1. Declare that Pc is satisfied. 

If R(e,z) requires attention, then restrain A up to ~oe(A;x)[s]. Initialize all 

lower priority requirements. 

End of Construction 

We now verify that under P -  + I~1, the constructions works. 
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LEMMA 11: F(A) = B. 

Proof: In the construction, whenever we put a number x into B, we also put a 

number y _< 3'(A; x) into A. Thus F(A) = B. | 

LEMMA 12: For each e E .hi, there is a stage s after which the requirements 

indexed by e never act or get initialized. 

Proof: Notice that  if no requirement with indices less than e acts, then Re can 

act at most once and P~ can act at most e § 2 times: Once for (A1); e times for 

(A2) (each Ni (i < e) makes Pc. act once); one more time for (A3). The rest of 

the proof is similar to the proofs of Lemma 8 and Lemma 9. | 

LEMMA 13: For any e in A4, the requirement P~ is satisfied. 

Proof: Fix e; let So be a stage such that  after so no requirement Pi (i <_ e) 

will act. We argue that  Pc is satisfied. First Pc has a pair of followers (y, x). If  

x is in Bso then Pe is satisfied. Assume that  x r Bso and y ~ Aso; then this 

pair of followers will remain the same since there are no actions of higher priority 

requirements after So. If x is not realized at any stage t > So then Pe is satisfied. 

If x is realized at some stage t > So then Pc will act, which is a contradiction. 
| 

LEMMA 14: For any e, x in .M, the requirement R(e,z) is satisfied. Consequently 

if  ff~(A) is total, then for any x E M there is a stage s such that for all t > s, 

(I'c(A) r x[t] = epc(A) F x[s]. 

Proof: Let s be a stage after which there is no action by any requirement 

of higher priority than R(~,z). If  r  after s, then the computat ion is 

preserved, which shows that  R(e,~) is satisfied. 

Now assume that  Be(A) is total. The choice of s implies that  if x t < x then 

R(c,~,) does not act after stage s. Since each R(e,x,I will act to preserve the 

final computat ion of 4Pe(A; x~), this computation must exist at stage s and be 

preserved by R(~,~,~ during all later stages, which establishes the lemma. | 

LEMMA 15: For any e in J~4, the requirement Ne is satisfied. 

Proof." Fix an e in A4. Fix a stage So such that  for all t > so and for all i < e, 

Pi never acts at stage t. Hence after stage so, Ae never gets initialized. 
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Suppose Oe(BWe) = A; we need to show that Ae(We) = A. Fix y. First we 

claim that if F(A) = B, kOe(A) = We and Oe(BWe) = A, then there is a stage 

sl such that  for all t > sl, l(e, t) > y. The reason is as follows. By Lemma 14, 

if a set C is weakly recursive in A, then C is also strongly recursive in A. Thus 

for any set D, if D <_T C ~_T A then D <--T A. Hence if F(A) = B, kOe(A) = We 

then Oe(BWe) is equal to (I)*(A) for some Turing functional O*. By Lemma 14, 

there is a stage tl  after which (I)*(A) [ (y + 1) never changes. Since A is regular, 

there is a stage t2 after which A r (Y + 1) never changes. Thus for any stage 

t > Sl = max{tl , t2},  the length of agreement l(e,t) > y. Therefore A(We;y) is 

defined at sl and it is equal to A(y)[sl]. 

The worry is that after A(W~)(y) is defined, y enters A. Hence we may assume 

that y is chosen by a positive requirement Pj for some j > e. Let (y, x) be the 

pair of followers chosen by Pj. 

Suppose that at the stage s, y enters A. Then by construction, a restraint up 

to Oe(BWe; y) is set on B. We argue that either We changes below O(BWe; y) 
or there is a z < y such that O(BWe;z) r A(z). Suppose that We does not 

change below O(BWe;y). Then to make O(BWe) = A, B must change below 

O(BWe; y). In other words, there is a k such that e < k < j and Pk is satisfied 

after stage s. By IE1, the set of such k is M-finite, hence has a least element k0. 

Let (z, x) be the pair of followers chosen by ko. At the stage Pko acts, z enters 

A and O(BW~; z) = 0. By the choice of k0, B does not change below O(BWe, z) 
because of the restraint. By assumption, We does not change below O(BWe; z) 
either. Therefore, O(BWe; z) 7 ~ A(z). 

In any case, N~ is satisfied, which establishes the Lemma and the Theorem. 

II 

We end our paper with a few open questions. 

O p e n  P r o b l e m s  

1. Is there a model 3J  of IE1 but not BE2, a E2 cut I in .M, and a family of 

total recursive functions {hi: i E I} which has the dominating property in 

M ?  

The result we have got in Section 2 does not offer us much insight, as in 

that particular model, the whole model M is a A2 rearrangement of the 

E2 cut w. 
2. Is there a BE2 model M such that 3/1 is not saturated and such that there 

is a branching degree in M ?  
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